Characterizing brain oxygen metabolism in patients with multiple sclerosis with T2-relaxation-under-spin-tagging MRI.

نویسندگان

  • Yulin Ge
  • Zhongwei Zhang
  • Hanzhang Lu
  • Lin Tang
  • Hina Jaggi
  • Joseph Herbert
  • James S Babb
  • Henry Rusinek
  • Robert I Grossman
چکیده

In this study, venous oxygen saturation and oxygen metabolic changes in multiple sclerosis (MS) patients were assessed using a recently developed T2-relaxation-under-spin-tagging (TRUST) magnetic resonance imaging (MRI), which measures the superior sagittal venous sinus blood oxygenation (Yv) and cerebral metabolic rate of oxygen (CMRO(2)), an index of global oxygen consumption. Thirty patients with relapsing-remitting MS and 30 age-matched healthy controls were studied using TRUST at 3 T MR. The mean expanded disability status scale (EDSS) of the patients was 2.3 (range, 0 to 5.5). We found significantly increased Yv (P<0.0001) and decreased CMRO(2) (P=0.003) in MS patients (mean±s.d.: 65.9%±5.1% and 138.8±35.4 μmol per 100 g per minute) as compared with healthy control subjects (60.2%±4.0% and 180.2±24.8 μmol per 100 g per minute, respectively), implying decrease of oxygen consumption in MS. There was a significant positive correlation between Yv and EDSS and between Yv and lesion load in MS patients (n=30); on the contrary, there was a significant negative correlation between CMRO(2) and EDSS and between CMRO(2) and lesion load (n=12). There was no correlation between Yv and brain atrophy measures. This study showed preliminary evidence of the potential utility of TRUST in global oxygen metabolism. Our results of significant underutilization of oxygen in MS raise important questions regarding mitochondrial respiratory dysfunction and neurodegeneration of the disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation.

Recently, a T(2) -Relaxation-Under-Spin-Tagging (TRUST) MRI technique was developed to quantitatively estimate blood oxygen saturation fraction (Y) via the measurement of pure blood T(2) . This technique has shown promise for normalization of fMRI signals, for the assessment of oxygen metabolism, and in studies of cognitive aging and multiple sclerosis. However, a human validation study has not...

متن کامل

Hemodynamic and Metabolic Assessment of Neonates With Punctate White Matter Lesions Using Phase-Contrast MRI and T2-Relaxation-Under-Spin-Tagging (TRUST) MRI

The brain's hemodynamic and metabolism of punctate white matter lesions (PWML) is poorly understood due to a scarcity of non-invasive imaging techniques. The aim of this study was to apply new MRI techniques to quantify cerebral metabolic rate of oxygen (CMRO2), global cerebral blood flow (CBF), oxygen saturation fractions in venous blood (Yv) and oxygen extraction fraction (OEF) in neonates wi...

متن کامل

A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis

Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...

متن کامل

QUantitative Imaging of eXtraction of oxygen and TIssue

While oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) are fundamental parameters of brain health and function, a robust MRI-based mapping of OEF and CMRO2 amenable to functional MRI (fMRI) has not been established. To address this issue, a novel method called QUantitative Imaging of eXtraction of Oxygen and TIssue Consumption, or QUIXOTIC, is introduced. The key i...

متن کامل

Correlation between brain volume change and T2 relaxation time induced by dehydration and rehydration: Implications for monitoring atrophy in clinical studies

Brain volume change measured from magnetic resonance imaging (MRI) provides a widely used and useful in vivo measure of irreversible tissue loss. These measurements, however, can be influenced by reversible factors such as shifts in brain water content. Given the strong effect of water on T2 relaxation, we investigated whether an estimate of T2 relaxation time would correlate with brain volume ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 32 3  شماره 

صفحات  -

تاریخ انتشار 2012